

Numerical Analysis and Computational Mathematics

Fall Semester 2024 - CSE Section

Prof. Laura Grigori

Assistant: Israa Fakih

Session 11 – November 27, 2024

Solutions – Linear systems & Eigenproblems

Solution I (MATLAB)

a) We assign the matrix A, visualize the truss bridge in Figure 1, and plot the pattern of A in Figure 2(left) by means of the following commands.

```
KK = 1e3;
nnodes = 29; % number of nodes of the bridge (odd)
[ A ] = bridge_stiffness_matrix( nnodes, KK );
plot_bridge(nnodes);
spy(A);
```

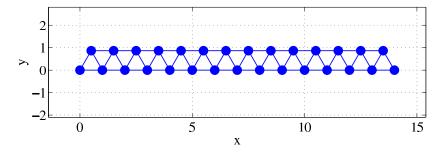
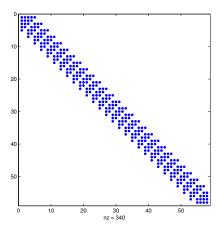


Figure 1: Truss bridge with $N_{nodes} = 29$.

We observe that the matrix A is sparse and banded. Then, we verify that the sparse matrix A is symmetric by plotting the pattern of the matrix A - A' in Figure 2(right); we observe that each element of the matrix A - A' is identically zero and thus A is symmetric.

```
spy(A'-A);
```

We verify that the matrix A is singular. Instead of computing the determinant of the matrix A, we estimate its conditioning number by means of the MATLAB command condest which returns the result Inf.



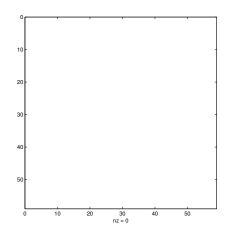


Figure 2: Patterns of the sparse matrices A (left) and A - A' (right); the nonzero elements are indicated by dots.

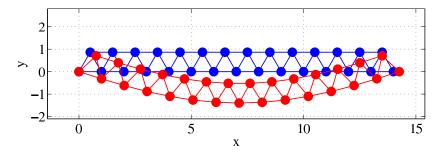


Figure 3: Truss bridge; deformed configuration (red) for the load \mathbf{f}_i^{ext} , $i=1,3,\ldots,N_{nodes}$.

```
K_A = condest( A )
% K_A =
% Inf
```

b) We impose the constraints to obtain the matrix \widetilde{A} from A and we verify that \widetilde{A} is nonsingular by means of the following commands. Ar corresponds to the matrix \widetilde{A} .

```
n = size(A, 2);
nr = n - 3;
ir = [3:n-1];
Ar = A(ir, ir);
K_Ar = condest(Ar)
% K_Ar =
    1.8838e+04
```

c) We use the following MATLAB commands to obtain the result of Figure 3 representing the deformed configuration of the bridge; this is obtained by applying the displacement vector **d** to the nodes of the undeformed truss bridge of Figure 1.

```
node_force = 1 : 2 : nnodes;
b = zeros( n, 1 );
b( 2 * node_force, 1 ) = -1;
br = b( ir, 1 );
dr = Ar \ br;
d = zeros( n, 1 );
d( ir, 1 ) = dr;
[ fig_h ] = plot_bridge( nnodes, d );
```

br and dr correspond to the vectors $\tilde{\mathbf{b}}$ and $\tilde{\mathbf{d}}$, respectively.

d) Since the LU factorization of the matrix \widetilde{A} is independent of the loads (the vector $\widetilde{\mathbf{b}}$), we use the following MATLAB commands, with the factorization of the matrix \widetilde{A} performed only once.

```
[ Lr, Ur, Pr ] = lu( Ar );
for l = 1 : 10
    b = 2 * ( rand( n, 1 ) - 0.5 ); % random force in [-1,1]
    br = b( ir, 1 );
    [ yr ] = forward_substitutions( Lr, Pr * br );
    [ dr ] = backward_substitutions( Ur, yr );
    d = zeros( n, 1 );
    d( ir, 1 ) = dr;
    [ fig_h ] = plot_bridge( nnodes, d );
    pause( 1 );
end
```

e) We use the following MATLAB commands to obtain that the GMRES and conjugate gradient methods converge to the solution, for the prescribed tolerance, in 54 and 56 iterations, respectively.

```
node_force = 1 : 2 : nnodes;
b = zeros( n, 1 );
b( 2 * node_force, 1 ) = -1;
br = b( ir, 1 );
dr_gmres = gmres( Ar, br, [], 5e-5, nr );
% gmres converged at iteration 54 to a solution with relative residual 1.8e-05.
dr_cg = pcg( Ar, br, 5e-5, 1000, [] );
% pcg converged at iteration 56 to a solution with relative residual 9.8e-06.
```

Solution II (MATLAB)

a) We consider the following implementation of the MATLAB function power_method.m.

```
function [ lambda, x, k ] = power_method( A, x0, tol, kmax );
% POWER_METHOD power method for the computation of the largest eigenvalue
% (in modulus) of the matrix A (\lambda_1). We assume that A is square,
% |\lambda_1| > |lambda_i| for i=2,...n, and \lambda_1 non zero
% Stopping criterion based on the relative difference of successive
% iterates of the eigenvalue.
```

```
[ lambda, x ] = power_method( A, x0, tol, kmax )
  Inputs: A = matrix (n \times n)
          x0
                 = initial vector (n x 1)
          tol
                 = tolerance for the stopping criterion
          kmax = maximum number of iterations
% Output: lambda = computed (largest) eigenvalue
          x = computed eigenvector correspoding to lambda
                = number of iterations
x = x0;
y = x / norm(x);
lambda = y' * A * y;
err = tol + 1;
k = 0;
lambda_old = lambda;
while ( err \geq tol && k \leq kmax )
   x = A * y;
   y = x / norm(x);
   lambda = y' * A * y;
   err = abs( lambda - lambda_old ) / abs( lambda );
   lambda_old = lambda;
   k = k + 1;
end
return
```

b) We consider the following MATLAB commands for which we obtain that $\lambda_1^{(k_c)} = 7.2589$ and $k_c = 23$.

We compute the relative error with respect to the exact value of λ_1 (computed by means of MATLAB). We obtain that $e^{(k_c)} = 7.9711 \cdot 10^{-7}$.

```
lambda1_ex = max( eig( A ) );
rel_err = abs( lambda1_c - lambda1_ex ) / abs( lambda1_ex )
%    rel_err =
%    7.9711e-07
```

c) We consider the following MATLAB commands for which we obtain that $\lambda_n^{(k_c)}=1.5919$ and $k_c=6$.

d) We verify that we can obtain the same result of point c) by means of the following commands. We select a shift value s=5 for which we can calculate $\lambda_n^{(k_c)}$ by firstly computing $\lambda_{s,1}^{(k_c)}$.

```
shift = 5;
[ lambda_s, x, k_c ] = power_method( A - shift * eye( n ), x0, 1e-6, 100 );
lambdan_c = lambda_s + shift
% lambdan_c =
% 1.5919
k_c
% k_c =
% 13
```

Solution III (MATLAB)

a) We consider the following MATLAB commands similarly to Exercise 1, point a). The matrices M and \widetilde{M} are nonsingular by construction.

```
KK = 4e2; m = 1;
nnodes = 29; % number of nodes of the bridge
[ A ] = bridge_stiffness_matrix( nnodes, KK );
n = size(A, 2);
M = m * speye(n, n);
nr = n - 3;
ir = [3:n-1];
Ar = A(ir, ir);
Mr = M(ir, ir);
K_Ar = condest(Ar)
   K_Ar =
      1.8838e+04
K_Mr = condest( Mr )
   K_Mr =
응
      1
```

b) We compute the 10 smallest eigenvalues $\widetilde{\lambda}_i$ and eigenmodes \mathbf{x}_i (from $\widetilde{\mathbf{x}}_i$), for $i = 1, \ldots, n$, as follows.

```
neig = 10;
```

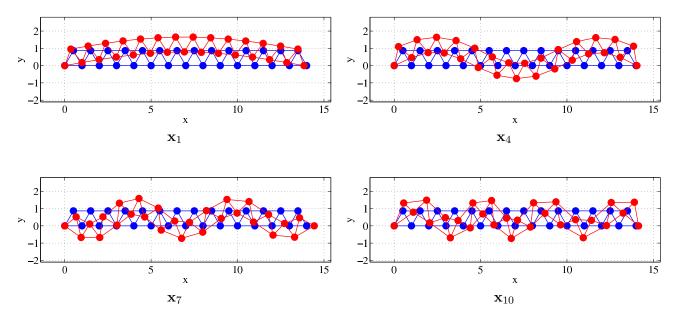


Figure 4: Eigenmodes \mathbf{x}_1 , \mathbf{x}_4 , \mathbf{x}_7 , and \mathbf{x}_{10} .

We observe that Lr is a diagonal sparse matrix of size 10×10 containing the eigenvalues on the diagonal. Similarly, Xr is the matrix containing in each column the eigenvector $\tilde{\mathbf{x}}_i$; the eigenmodes \mathbf{x}_i are obtained from $\tilde{\mathbf{x}}_i$ by taking into account the displacement constraints.

By considering a multiplicative factor to enhance the visualization of the eigenmodes and taking into account their ordering from the variable lambda_r, we obtain the results reported in Figure 4 by means of the following commands.

```
viz.fact = 3; % rescale facror for visualization of the eigenmodes
% first eigenmode, lambda = 0.1758
[ fig_h ] = plot_bridge( nnodes, viz_fact * X(:, 1 ) )
% fourth eigenmode, lambda = 10.3839
[ fig_h ] = plot_bridge( nnodes, viz_fact * X(:, 4 ) )
% seventh eigenmode, lambda = 49.2831
[ fig_h ] = plot_bridge( nnodes, viz_fact * X(:, 7 ) )
% tenth eigenmode, lambda = 120.2148
[ fig_h ] = plot_bridge( nnodes, viz_fact * X(:, 10 ) )
```