
Numerical Analysis and Computational Mathematics

Fall Semester 2024 – CSE Section

Prof. Laura Grigori

Assistant: Israa Fakih

Session 11 – November 27, 2024

Solutions – Linear systems & Eigenproblems

Solution I (MATLAB)

a) We assign the matrix A, visualize the truss bridge in Figure 1, and plot the pattern of A in
Figure 2(left) by means of the following commands.

�
KK = 1e3;
nnodes = 29; % number of nodes of the bridge (odd)
[A] = bridge stiffness matrix(nnodes, KK);
plot bridge(nnodes);
spy(A);� �

Figure 1: Truss bridge with Nnodes = 29.

We observe that the matrix A is sparse and banded. Then, we verify that the sparse matrix
A is symmetric by plotting the pattern of the matrix A − A′ in Figure 2(right); we observe
that each element of the matrix A−A′ is identically zero and thus A is symmetric.

�
spy(A'−A);� �
We verify that the matrix A is singular. Instead of computing the determinant of the matrix
A, we estimate its conditioning number by means of the MATLAB command condest which
returns the result Inf.

1

0 10 20 30 40 50

0

10

20

30

40

50

nz = 340

0 10 20 30 40 50

0

10

20

30

40

50

nz = 0

Figure 2: Patterns of the sparse matrices A (left) and A − A′ (right); the nonzero elements are
indicated by dots.

Figure 3: Truss bridge; deformed configuration (red) for the load f exti , i = 1, 3, . . . , . . . , Nnodes.

�
K A = condest(A)
% K A =
% Inf� �

b) We impose the constraints to obtain the matrix Ã from A and we verify that Ã is nonsingular
by means of the following commands. Ar corresponds to the matrix Ã.

�
n = size(A, 2);
nr = n − 3;
ir = [3 : n − 1];
Ar = A(ir, ir);
K Ar = condest(Ar)
% K Ar =
% 1.8838e+04� �

c) We use the following MATLAB commands to obtain the result of Figure 3 representing the
deformed configuration of the bridge; this is obtained by applying the displacement vector d
to the nodes of the undeformed truss bridge of Figure 1.

�
2

node force = 1 : 2 : nnodes;
b = zeros(n, 1);
b(2 * node force, 1) = −1;
br = b(ir, 1);
dr = Ar \ br;
d = zeros(n, 1);
d(ir, 1) = dr;
[fig h] = plot bridge(nnodes, d);� �
br and dr correspond to the vectors b̃ and d̃, respectively.

d) Since the LU factorization of the matrix Ã is independent of the loads (the vector b̃), we use
the following MATLAB commands, with the factorization of the matrix Ã performed only
once.

�
[Lr, Ur, Pr] = lu(Ar);
for l = 1 : 10

b = 2 * (rand(n, 1) − 0.5); % random force in [−1,1]
br = b(ir, 1);
[yr] = forward substitutions(Lr, Pr * br);
[dr] = backward substitutions(Ur, yr);
d = zeros(n, 1);
d(ir, 1) = dr;
[fig h] = plot bridge(nnodes, d);
pause(1);

end� �
e) We use the following MATLAB commands to obtain that the GMRES and conjugate gradi-

ent methods converge to the solution, for the prescribed tolerance, in 54 and 56 iterations,
respectively.

�
node force = 1 : 2 : nnodes;
b = zeros(n, 1);
b(2 * node force, 1) = −1;
br = b(ir, 1);
dr gmres = gmres(Ar, br, [], 5e−5, nr);
% gmres converged at iteration 54 to a solution with relative residual 1.8e−05.
dr cg = pcg(Ar, br, 5e−5, 1000, []);
% pcg converged at iteration 56 to a solution with relative residual 9.8e−06.� �

Solution II (MATLAB)

a) We consider the following implementation of the MATLAB function power method.m.

�
function [lambda, x, k] = power method(A, x0, tol, kmax);
% POWER METHOD power method for the computation of the largest eigenvalue
% (in modulus) of the matrix A (\lambda 1). We assume that A is square,
% | \lambda 1 | > | lambda i | for i=2,...n, and \lambda 1 non zero
% Stopping criterion based on the relative difference of successive
% iterates of the eigenvalue.

3

% [lambda, x] = power method(A, x0, tol, kmax)
% Inputs: A = matrix (n x n)
% x0 = initial vector (n x 1)
% tol = tolerance for the stopping criterion
% kmax = maximum number of iterations
% Output: lambda = computed (largest) eigenvalue
% x = computed eigenvector correspoding to lambda
% k = number of iterations
%

x = x0;
y = x / norm(x);
lambda = y' * A * y;
err = tol + 1;
k = 0;
lambda old = lambda;

while (err ≥ tol && k ≤ kmax)

x = A * y;
y = x / norm(x);
lambda = y' * A * y;

err = abs(lambda − lambda old) / abs(lambda);

lambda old = lambda;
k = k + 1;

end

return� �
b) We consider the following MATLAB commands for which we obtain that λ

(kc)
1 = 7.2589 and

kc = 23.

�
n = 4;
A = [5 −2 −1 0; −2 5 −1 −1; −1 −1 4 −1; 0 −1 −1 5];
x0 = ones(n, 1);
[lambda1 c, x1, k c] = power method(A, x0, 1e−6,100);
lambda1 c
% lambda1 c =
% 7.2589
k c
% k c =
% 23� �
We compute the relative error with respect to the exact value of λ1 (computed by means of
MATLAB). We obtain that e(kc) = 7.9711 · 10−7.

�
lambda1 ex = max(eig(A));
rel err = abs(lambda1 c − lambda1 ex) / abs(lambda1 ex)
% rel err =
% 7.9711e−07� �

4

c) We consider the following MATLAB commands for which we obtain that λ
(kc)
n = 1.5919 and

kc = 6.

�
invA = inv(A);
[lambda1 inv c, x1 inv, k c] = power method(invA, x0, 1e−6, 100);
lambdan c = 1 / lambda1 inv c
% lambdan c =
% 1.5919
k c
% k c =
% 6� �

d) We verify that we can obtain the same result of point c) by means of the following commands.

We select a shift value s = 5 for which we can calculate λ
(kc)
n by firstly computing λ

(kc)
s,1 .

�
shift = 5;
[lambda s, x, k c] = power method(A − shift * eye(n), x0, 1e−6, 100);
lambdan c = lambda s + shift
% lambdan c =
% 1.5919
k c
% k c =
% 13� �

Solution III (MATLAB)

a) We consider the following MATLAB commands similarly to Exercise 1, point a). The matrices

M and M̃ are nonsingular by construction.

�
KK = 4e2; m = 1;
nnodes = 29; % number of nodes of the bridge
[A] = bridge stiffness matrix(nnodes, KK);
n = size(A, 2);
M = m * speye(n, n);
nr = n − 3;
ir = [3 : n − 1];
Ar = A(ir, ir);
Mr = M(ir, ir);
K Ar = condest(Ar)
% K Ar =
% 1.8838e+04
K Mr = condest(Mr)
% K Mr =
% 1� �

b) We compute the 10 smallest eigenvalues λ̃i and eigenmodes xi (from x̃i), for i = 1, . . . , n, as
follows.

�
neig = 10;

5

x1 x4

x7 x10

Figure 4: Eigenmodes x1, x4, x7, and x10.

[Xr, Lr] = eigs(Ar, Mr, neig, 'SM');
lambda r = diag(Lr)'
% lambda r =
% 0.1758 2.2183 4.3588 10.3889 24.5227 38.0159
% 49.2831 79.0215 102.4560 120.2148
X = zeros(n, neig);
X(ir, :) = Xr(:, :);� �
We observe that Lr is a diagonal sparse matrix of size 10× 10 containing the eigenvalues on
the diagonal. Similarly, Xr is the matrix containing in each column the eigenvector x̃i; the
eigenmodes xi are obtained from x̃i by taking into account the displacement constraints.

By considering a multiplicative factor to enhance the visualization of the eigenmodes and
taking into account their ordering from the variable lambda r, we obtain the results reported
in Figure 4 by means of the following commands.

�
viz fact = 3; % rescale facror for visualization of the eigenmodes
% first eigenmode, lambda = 0.1758
[fig h] = plot bridge(nnodes, viz fact * X(:, 1))
% fourth eigenmode, lambda = 10.3839
[fig h] = plot bridge(nnodes, viz fact * X(:, 4))
% seventh eigenmode, lambda = 49.2831
[fig h] = plot bridge(nnodes, viz fact * X(:, 7))
% tenth eigenmode, lambda = 120.2148
[fig h] = plot bridge(nnodes, viz fact * X(:, 10))� �

6

